Development of Small Diameter Nanofiber Tissue Engineered Arterial Grafts

نویسندگان

  • Hirotsugu Kurobe
  • Mark W. Maxfield
  • Shuhei Tara
  • Kevin A. Rocco
  • Paul S. Bagi
  • Tai Yi
  • Brooks Udelsman
  • Zhen W. Zhuang
  • Muriel Cleary
  • Yasuko Iwakiri
  • Christopher K. Breuer
  • Toshiharu Shinoka
چکیده

The surgical repair of heart and vascular disease often requires implanting synthetic grafts. While synthetic grafts have been successfully used for medium-to-large sized arteries, applications for small diameter arteries (<6 mm) is limited due to high rates of occlusion by thrombosis. Our objective was to develop a tissue engineered vascular graft (TEVG) for small diameter arteries. TEVGs composed of polylactic acid nanofibers with inner luminal diameter between 0.5 and 0.6 mm were surgically implanted as infra-renal aortic interposition conduits in 25 female C17SCID/bg mice. Twelve mice were given sham operations. Survival of mice with TEVG grafts was 91.6% at 12 months post-implantation (sham group: 83.3%). No instances of graft stenosis or aneurysmal dilatation were observed over 12 months post-implantation, assessed by Doppler ultrasound and microCT. Histologic analysis of explanted TEVG grafts showed presence of CD31-positive endothelial monolayer and F4/80-positive macrophages after 4, 8, and 12 months in vivo. Cells positive for α-smooth muscle actin were observed within TEVG, demonstrating presence of smooth muscle cells (SMCs). Neo-extracellular matrix consisting mostly of collagen types I and III were observed at 12 months post-implantation. PCR analysis supports histological observations. TEVG group showed significant increases in expressions of SMC marker, collagen-I and III, matrix metalloproteinases-2 and 9, and itgam (a macrophage marker), when compared to sham group. Overall, patency rates were excellent at 12 months after implantation, as structural integrity of these TEVG. Tissue analysis also demonstrated vessel remodeling by autologous cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model

Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient's own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically...

متن کامل

Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells

BACKGROUND Tissue engineering has emerged as a promising alternative for small-diameter vascular grafts. The aim of this study was to determine the feasibility of using decellularized aortae of fetal pigs (DAFPs) to construct tissue-engineered, small-diameter vascular grafts and to test the performance and application of DAFPs as vascular tissue-engineered scaffolds in the canine arterial syste...

متن کامل

Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.

Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation w...

متن کامل

Tissue engineering of recellularized small-diameter vascular grafts.

A tissue-engineered small-diameter arterial graft would be of benefit to patients requiring vascular reconstructive procedures. Our objective was to produce a tissue-engineered vascular graft with a high patency rate that could withstand arterial pressures. Rat arteries were acellularized with a series of detergent solutions, recellularized by incubation with a primary culture of endothelial ce...

متن کامل

Tissue engineering of vascular grafts

Tissue engineering of vascular grafts 187 1 3 Summary Background There is a considerable clinical need for a sufficient prosthetic small-diameter substitute which can compete with autologous vessels. Currently used synthetic materials have a poor performance due to high thrombogeneicity and development of intimal hyperplasia. Tissue engineering is an interesting alternative approach for vascula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015